lunes, 10 de noviembre de 2014

GEOMETRIA

La geometría es una parte de la matematica que trata de estudiar unas idealizaciones del espacio en que vivimos, que son los puntos, las rectas y los planos, y otros elementos conceptuales derivados de ellos, como poligonos o poliedros.
En la practica, la geometría sirve para solucionar problemas concretos en el mundo de lo visible. Entre sus utilidades se encuentran la justificación teorica de muchos instrumentos: compás, teodolito, pantógrafo, sistema de posicionamiento global. También es la que nos permite medir areas y volumenes, es útil en la preparación de diseños, e incluso en la fabricación de artesanías.
La geometria clásica o axiomática es una matemática en la cuál los objetos, en vez de ser números, son puntos, rectas, planos y otras figuras definidas en función de estas.

FIGURAS GEOMETRICAS

El avance de la geometría depende fuertemente del avance en las definiciones, las propiedades de los triangulos son posibles de enunciar sin hacer referencia a estos, pero sería un proceso largo tedioso e inútil.
  • Figuras fundamentales: Punto, Recta y Plano.
  • En la recta se pueden ver: Segmentos, semirectas y vectores
  • En el plano, una recta determina dos semiplanos, su intersección determina las figuras convexas: faja, Ángulo, Triángulo, cuadrángulo y Polígono.
  • Utilizando el concepto de distancia: se definen: el círculo y la esfera.
  • Utilizando el concepto de semiespacio se definen: el diedro, el espacio prismático, el triedro, el ángulo poliedro, y los poliedros. Entre los últimos encontramos como casos particulares: el tetraedro, el prisma, la pirámide y el paralelepipedo.
  • El concepto de círculo en el espacio da origen a: el cono y el cilindro
RELACIONES Y PROPIEDADES

Entre dos o más figuras puede haber relaciones diferentes, dos rectas pueden ser paralelas, perpendiculares o oblicuas (se cortan en un punto formando angulos no rectos).
En el espacio, también pueden ser alabeadas (o cruzadas). Uno de los conceptos más importantes dentro de la geometría es el de congruencia o igualdad.

CLASES DE GEOMETRIAS


Teniendo en cuenta más axiomas se obtienen otras geometrías (en las cuales todo lo dicho hasta aquí es válido). Si damos por cierto el axioma del paralelismo de Euclides, obtenemos la Geometría euclidiana también conocida como geometría plana.
Agregando a estos los axiomas relativos al espacio, obtenemos la geometría espacial (estos últimos no son más que extensiones de los axiomas relativos al plano). La Geometría descriptiva, es la que se encarga de que los problemas posibilitar la resolución de los problemas de la geometría del espacio por medio de operaciones efectuadas en un plano.
Si agregamos otros axiomas, ya sean diferentes postulados de paralelismo o de existencia de conjuntos de puntos mayores que el plano (y menores que el espacio) se obtienen las geometrías no euclídeas
Útilizando los conocimientos de otras areas (y por lo tanto sus axiomas respectivos), se obtienen: la Geometría analítica, los métodos del álgebra y del análisis matemático.

MATEMÁTICAS Y GEOMETRÍA

noviembre 7, 2006 at 7:22 pm (educación, geometría)
Las Matemáticas estudian de patrones en las estructuras de entes abstractos y en las relaciones entre ellas. Algunos matemáticos se refieren a ellas como la “Reina de las Ciencias”.  La matemática es un arte, pero también una ciencia de estudio. Informalmente, se puede decir que es el estudio de los “números y símbolos”.
Dentro de las matemáticas encontramos numerosas ramas, como por ejemplo: números, álgebra, vectores, calculos, teoremas, geometría, etc. Por ello, las Matemáticas se dividen en Matemáticas Puras y Matemáticas Aplicadas. Por Matemáticas Puras se entiende el estudio de la Lógica matemática, el Álgebra, la Topología, la Geometría, el Análisis y la Estadística (probabilidad). Por Matemática Aplicada se entiende al uso de los conocimientos de las ramas anteriores para la resolución de problemas susceptibles de describirse en términos matemáticos.
La geometría es una rama de las matemáticas  que estudia idealizaciones del espacio: puntos, rectas, planos, polígonos, poliedros, curvas y superficies.
Creo que la geometría de primaria es uno los apartados menos trabajados  en la enseñanza de las matemáticas, ya que siempre se planifica la asignatura de tal manera que los contenidos geométricos se colocan en el último bloque temático, para el que casi nunca hay tiempo para profundizar lo suficiente.

El primer contacto de los alumnos con la geometría tiene lugar desde el primer momento en el que comienzan a manipular objetos utilizados en la vida cotidiana; después, poco a poco el niño va adquiriendo aptitudes que le permiten reconocer  y comparar estos cuerpos con formas y figuras geométricas.

Pienso que la herramienta o recurso básico para el aprendizaje de los primeros conceptos de Geometría es el juego, sobretodo en las primeras etapas o ciclos de la educación primaria, ya que a través de él los niños captan e interiorizan mejor  los contenidos, dado que les resulta más fácil recordar algo de lo que ellos han sido participes.

geometria1.gif

geometria

La geometría es la matemática que estudia idealizaciones del espacio: los puntos, las rectas, los planos y otros elementos conceptos derivados de ellos, como polígonos o poliedros. La Geometría (del latín geometrĭa, que proviene del idioma griego γεωμετρία, geo tierra y metria medida), es una rama de la matemática que se ocupa del estudio de las propiedades de las figuras geométricas en el plano o el espacio, como son: puntos, rectas, planos, politopos (paralelas, perpendiculares, curvas, superficies, polígonos, poliedros, etc).
Es la justificación teórica de la geometría descriptiva o del dibujo técnico. También da fundamento a instrumentos como el compás, el teodolito, el pantógrafo o el sistema de posicionamiento global (en especial cuando se la considera en combinación con el análisis matemático y sobre todo con las ecuaciones diferenciales).
Sus orígenes se remontan a la solución de problemas concretos relativos a medidas. Tiene su aplicación práctica en física aplicada, mecánica, arquitectura, cartografía, astronomía, náutica, topografía, balística, etc. Y es útil en la preparación de diseños e incluso en la elaboración de artesanías.

Tipos de geometría

Entre los tipos de geometría más destacables se encuentran: geometría plana y del espacio

Geometría euclidiana

La geometría euclidiana (o geometría parabólica) es aquella que estudia las propiedades del plano y el espacio tridimensional. En ocasiones los matemáticos usan el término para englobar geometrías de dimensiones superiores con propiedades similares. Sin embargo, con frecuencia, geometría euclidiana es sinónimo de geometría plana y de geometría clásica. Fragmento de Los elementos de Euclides, escrito en papiro, hallado en el yacimiento de Oxirrinco (Egipto). Desde un punto de vista historiográfico, la geometría euclidiana es aquella geometría que postuló Euclides, en su libro Los elementos, dejando al margen las aportaciones que se hicieron posteriormente —desde Arquímedes hasta Jakob Steiner—. Según la contraposición entre método sintético y método algebraico-analítico, la geometría euclidiana sería, precisamente, el estudio por métodos sintéticos de los invariantes de un espacio vectorial real de dimensión 3 dotado de un producto escalar muy concreto (el frecuentemente denominado «producto escalar habitual»). Según el programa de Erlangen, la geometría euclidiana sería el estudio de los invariantes de las isometrías en un espacio euclidiano (espacio vectorial real de dimensión finita, dotado de un producto escalar).

Geometría plana

La geometría plana es una parte de la geometría euclidiana que trata de aquellos elementos cuyos puntos están contenidos en un plano. La geometría plana está considerada parte de la geometría euclidiana, pues ésta estudia los elementos geométricos a partir de dos dimensiones.

Geometría espacial

La geometría espacial o geometría del espacio es la rama de la geometría que se ocupa de las propiedades y medidas de las figuras geométricas en el espacio tridimensional o espacio euclídeo. Entre estas figuras, también llamadas sólidos, se encuentran el cono, el cubo, el cilindro, la pirámide, la esfera, el prisma, los poliedros regulares (los sólidos platónicos, convexos, y los sólidos de Kepler-Poinsot, no convexos) y otros poliedros.
La geometría del espacio amplía y refuerza las proposiciones de la geometría plana, y es la base fundamental de la trigonometría esférica, la geometría analítica del espacio, la geometría descriptiva y otras ramas de las matemáticas. Se usa ampliamente en matemáticas, en ingeniería y en ciencias naturales.
Llamamos cuerpos geométricos a las figuras que se han de representar en el espacio tridimensional. Los cuerpos geométricos ocupan siempre un espacio.
Asimismo, los cuerpos que están huecos pueden albergar en su interior otros cuerpos en una cantidad que recibe el nombre de capacidad. Existe una relación directa entre la capacidad de un cuerpo y el volumen que éste ocupa.
La geometría espacial se basa en un sistema formado por tres ejes (X,Y,Z):
  • Ortogonales (perpendiculares 2 a 2)
  • Normalizados (las longitudes de los vectores básicos de cada eje son iguales)
  • Dextrógiros (el tercer eje es producto vectorial de los otros 2)

Geometría No euclidiana

Se denomina geometría no euclidiana o no euclídea, a cualquier forma de geometría cuyos postulados y propiedades difieren en algún punto de los establecidos por Euclides en su tratado Elementos. No existe un sólo tipo de geometría no euclídea, sino muchos, aunque si se restringe la discusión a espacios homogéneos, en los que la curvatura del espacio la misma en cada punto, en los que los puntos del espacio son indistinguibles pueden distinguirse tres tipos de geometrías:
  • La geometría euclidiana satisface los cinco postulados de Euclides y tiene curvatura cero.
  • La geometría hiperbólica satisface sólo los cuatro primeros postulados de Euclides y tiene curvatura negativa.
  • La geometría elíptica satisface sólo los cuatro primeros postulados de Euclides y tiene curvatura positiva.
Todos estos son casos particulares de geometrías riemannianas, en los que la curvatura es constante, si se admite la posibilidad de que la curvatura intrínseca de la geometría varíe de un punto a otro se tiene un caso de geometría riemanniana general, como sucede en la teoría de la relatividad general donde la gravedad causa una curvatura no homogénea en el espacio tiempo, siendo mayor la curvatura cerca de las concentraciones de masa, lo cual es percibido como un campo gravitatorio atractivo.

Geometría Riemanniana

En geometría diferencial, la geometría de Riemann es el estudio de las variedades diferenciales con métricas de Riemann; es decir de una aplicación que a cada punto de la variedad, le asigna una forma cuadrática definida positiva en su espacio tangente, aplicación que varía suavemente de un punto a otro. Esto da ideas locales de (entre otras magnitudes) ángulo, longitud de curvas, y volumen. A partir de éstas, pueden obtenerse otras magnitudes por integración de las magnitudes locales.
Fue propuesta por primera vez de forma general por Bernhard Riemann en el siglo XIX. Como casos especiales particulares aparecen los dos tipos convencionales (geometría elíptica y geometría hiperbólica) de geometría No-Euclidiana, así como la geometría euclidiana misma. Todas estas geometrías se tratan sobre la misma base, al igual que una amplia gama de las geometrías con propiedades métricas que varían de punto a punto.

Geometría Analítica

La geometría analítica estudia las figuras geométricas mediante técnicas básicas del análisis matemático y del álgebra en un determinado sistema de coordenadas. Su desarrollo histórico comienza con la geometría cartesiana, impulsada con la aparición de la geometría diferencial de Carl Friedrich Gauss y más tarde con el desarrollo de la geometría algebraica. Actualmente la geometría analítica tiene múltiples aplicaciones más allá de las matemáticas y la ingeniería, pues forma parte ahora del trabajo de administradores para la planeación de estrategias y logística en la toma de decisiones.

matematicas

Las matemáticas o la matemática1 (del latín mathematĭca, y este del griego μαθηματικά, derivado de μάθημα, ‘conocimiento’) es una ciencia formal que, partiendo de axiomas y siguiendo el razonamiento lógico, estudia las propiedades y relaciones entre entidades abstractas con números, figuras geométricas o símbolos, pese a que también es discutido su carácter científico. Las matemáticas se emplean para estudiar relaciones cuantitativas, estructuras, relaciones geométricas y las magnitudes variables. Los matemáticos buscan patrones,2 3 formulan nuevas conjeturas e intentan alcanzar la verdad matemática mediante rigurosas deducciones. Éstas les permiten establecer los axiomas y las definiciones apropiados para dicho fin.4 Algunas definiciones clásicas restringen las matemáticas al razonamiento sobre cantidades,1 aunque solo una parte de las matemáticas actuales usan números, predominando el análisis lógico de construcciones abstractas no cuantitativas.
Existe cierta discusión acerca de si los objetos matemáticos, como los números y puntos, realmente existen o simplemente provienen de la imaginación humana. El matemático Benjamin Peirce definió las matemáticas como "la ciencia que señala las conclusiones necesarias".5 Por otro lado, Albert Einstein declaró que:" cuando las leyes de la matemática se refieren a la realidad, no son exactas; cuando son exactas, no se refieren a la realidad".6
Para explicar el mundo natural se usan las matemáticas, tal como lo expresó Eugene Wigner (premio Nobel en 1963):7
La enorme utilidad de las matemáticas en las ciencias naturales es algo que roza lo misterioso, y no hay explicación para ello. No es en absoluto natural que existan “leyes de la naturaleza”, y mucho menos que el hombre sea capaz de descubrirlas. El milagro de lo apropiado que resulta el lenguaje de las matemáticas para la formulación de las leyes de la física es un regalo maravilloso que no comprendemos ni nos merecemos.
Mediante la abstracción y el uso de la lógica en el razonamiento, las matemáticas han evolucionado basándose en las cuentas, el cálculo y las mediciones, junto con el estudio sistemático de la forma y el movimiento de los objetos físicos. Las matemáticas, desde sus comienzos, han tenido un fin práctico.
Las explicaciones que se apoyaban en la lógica aparecieron por primera vez con la matemática helénica, especialmente con los Elementos de Euclides. Las matemáticas siguieron desarrollándose, con continuas interrupciones, hasta que en el Renacimiento las innovaciones matemáticas interactuaron con los nuevos descubrimientos científicos. Como consecuencia, hubo una aceleración en la investigación que continúa hasta la actualidad.
Hoy en día, las matemáticas se usan en todo el mundo como una herramienta esencial en muchos campos, entre los que se encuentran las ciencias naturales, la ingeniería, la medicina y las ciencias sociales, e incluso disciplinas que, aparentemente, no están vinculadas con ella, como la música (por ejemplo, en cuestiones de resonancia armónica). Las matemáticas aplicadas, rama de las matemáticas destinada a la aplicación de los conocimientos matemáticos a otros ámbitos, inspiran y hacen uso de los nuevos descubrimientos matemáticos y, en ocasiones, conducen al desarrollo de nuevas disciplinas. Los matemáticos también participan en las matemáticas puras, sin tener en cuenta la aplicación de esta ciencia, aunque las aplicaciones prácticas de las matemáticas puras suelen ser descubiertas con el paso del tiempo.

Índice